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Abstract
Recently, a computational criterion of separability induced by the greatest cross
norm was proposed by Rudolph (2002 Preprint quant-ph/0202121). There,
Rudolph conjectured that the new criterion is neither weaker nor stronger than
the positive partial-transpose criterion for separability. We show that there
exists a counterexample to the this claim, that is, the proposed criterion is not
equivalent to the positive partial-transpose criterion.

PACS number: 03.65.Ud

1. Introduction

Entanglement as one of the most non-classical features of quantum mechanics has attracted
much attention in the past decade. Although the non-local character of quantum mechanics
was singled out many decades ago [1, 2], it has recently received considerable attention in
connection with the theory of quantum information [3–6]. Entanglement usually arises from
quantum correlations between separated subsystems which cannot be created by local actions
on each subsystem. By definition, a bipartite mixed state ρ is said to be separable if it can be
expressed as

ρ =
∑
i

wiρi ⊗ σi wi � 0
∑
i

wi = 1 (1.1)

where ρi and σi denote density matrices of subsystems 1 and 2, respectively. Otherwise the
state is entangled.

The central tasks of quantum information theory are to characterize and quantify entangled
states. The first attempt at characterization of entangled states was made by Peres and
Horodecki et al [7, 8]. It was shown that a necessary condition for separability of a bipartite
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system is that its partial transpose must be positive. Horodecki et al showed that this condition
is sufficient for separability of composite systems only for dimensions 2 ⊗ 2 and 2 ⊗ 3.

A new criterion for separability and also an entanglement measure for bipartite systems
based on the greatest cross norm are introduced by Rudolph [9–11]. In an interesting paper
[11], he obtained the values of the greatest cross norm for some states such as Werner and
isotropic states. In [11], Rudolph also introduced a computational criterion for separability of
mixed states induced by the greatest cross norm and he could obtain the separability conditions
for some states such as Werner states, isotropic states and 2-qubit Bell diagonal states. He
showed that the new criterion completely characterizes the separability properties of pure
states, Bell decomposable states and isotropic states in arbitrary dimension. He conjectured
that the new criterion is neither weaker nor stronger than the positive partial transpose (PPT)
criterion introduced by Peres and Horodecki et al in [7, 8].

In this paper, we introduce Bell decomposable states of 2 ⊗3 systems and show that there
is a state in this category that is entangled in the sense of the PPT criterion but separable in
the sense of the new criterion introduced in [11], that is the new criterion is not equivalent to
the PPT criterion.

The paper is organized as follows. In section 2, we briefly review the greatest cross-norm
criterion for separability of bipartite systems. The computable criterion induced by the greatest
cross norm is also reviewed. Bell decomposable states in 2 ⊗ 3 systems are introduced in
section 3 and the PPT conditions for separability of these states are also obtained. Finally, we
show that there exists a state that is entangled in the sense of the PPT criterion but satisfies the
new criterion for separability proposed by Rudolph.

2. Trace class-norm criterion for separability and associated induced separability
criterion

In this section, we briefly review the greatest cross norm for separability of bipartite systems
introduced by Rudolph in [9] and also the induced criterion introduced in [11].

By definition, the trace class norm of an operator A is defined by ‖A‖1 = Tr(
√
A†A),

and the operator A is said to be trace class operator if its trace class norm ‖A‖1 exists [12].
Let us consider Hilbert spacesH1 and H2 associated with particles 1 and 2, respectively. One
can show that spaces T (H1) and T (H2) of trace class operators on H1 and H2 are Banach
spaces once they are equipped with the trace-class norms ‖ · ‖(1)1 and ‖ · ‖(2)1 , respectively. The
algebraic tensor product T (H1) ⊗alg T (H2) of T (H1) and T (H2) is defined as the set of all
finite sums

∑n
i=1 ui ⊗ vi , where ui ∈ T (H1) and vi ∈ T (H2) for all i.

A cross norm on T (H1)⊗alg T (H2) is defined by (see [9, 11] and references therein)

‖t‖γ := inf

{
n∑
i=1

‖ui‖1‖vi‖1

∣∣∣∣∣t =
n∑
i=1

ui ⊗ vi

}
(2.2)

where t ∈ T (H1) ⊗alg T (H2) and the infimum is taken over all finite decompositions of t
into elementary tensors. By definition, a norm on T (H1) ⊗alg T (H2) is a subcross norm if
‖t1 ⊗t2‖ � ‖t1‖1‖t2‖1 for all t1 ∈ T (H1) and t2 ∈ T (H2) and it is a cross norm if the inequality
can be replaced by an equality for all t1 ∈ T (H1) and t2 ∈ T (H2). It can be shown that the
norm ‖ · ‖γ majorizes any subcross norm on T (H1) ⊗alg T (H2), so it is called greatest cross
norm [13].

The greatest cross-norm criterion proposed by Rudolph is as follows [9, 11]. Let H1 and
H2 be finite-dimensional Hilbert spaces and ρ be a density operator on H1 ⊗H2. The density
matrix ρ is separable if and only if ‖ρ‖γ = 1. Rudolph in [11] determines the greatest cross
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norm for some states such as Werner and isotropic states. In addition, in the second part of
[11], Rudolph introduced a new necessary separability criterion for bipartite systems induced
by the greatest cross norm on the Hilbert–Schmidt space.

In the Hilbert–Schmidt space HS(H), the operators of the Hilbert space H are regarded
as vectors. This space is equipped with the Hilbert–Schmidt inner product defined by
〈T |T ′〉HS = Tr(T †T ′), where T and T ′ are two operators acting on space H.

Consider two finite-dimensional Hilbert spaces K1 � Cn and K2 � Cm. It is shown in
[11] that there is a one-to-one correspondence between states |ψ〉 ∈ K1 ⊗ K2 and Hilbert–
Schmidt operators A : K2 → K1 in such a way that if |ψ〉 = ∑

ij cij |ai〉 ⊗ |bj 〉 be
a decomposition of |ψ〉 in terms of orthonormal bases {|ai〉} and {|bj〉} of K1 and K2,
respectively, then A(|ψ〉) = ∑

ij cij |ai〉〈b∗
j |. Conversely, if A = ∑

ij cij |ai〉〈bj | is a
decomposition of A in terms of orthonormal bases {|ai〉} and {|bj 〉} of K1 and K2,
respectively, then |ψA〉 = ∑

ij cij |ai〉 ⊗ |b∗
j 〉. Rudolph also showed that the above one-to-one

correspondence is isometric, that is, 〈A(ψ1)|A(ψ2)〉HS = 〈ψ1|ψ2〉 and 〈ψA|ψB〉 = 〈A|B〉HS
[11].

Now consider the case that K1 = HS(H1) � Cn and K2 = HS(H2) � Cm are the
spaces of Hilbert–Schmidt operators on Hilbert spaces H1 and H2, respectively. Analogous
to the above correspondence, there exists a one-to-one correspondence between Hilbert–
Schmidt operators T ∈ HS(H1 ⊗ H2) (acting on H1 ⊗ H2) and Hilbert–Schmidt operators
U(T ) : HS(H2) → HS(H1). Without loss of generality assume that H1 = H2. Every state
T ∈ HS(H ⊗H) in the Hilbert–Schmidt space can be written as [11]

T =
∑
i

λiEi ⊗ Fi (2.3)

where {λi}i are non-negative real numbers and {Ei}i and {Fi}i are orthonormal bases of
Hilbert–Schmidt spaces of particles 1 and 2, respectively [11]. It follows that the trace-class
norm of U(T ) denoted by T (U(T )) is equal to T (U(T )) = ∑

i λi .
Rudolph in [11] proposed its new criterion for separability in a proposition which is

quoted below:

Proposition 1 [11]. Let H be a finite-dimensional Hilbert space and ρ ∈ T (H ⊗ H) be a
density operator. If ρ is separable then

T (U(ρ)) � 1. (2.4)

Based on the above criterion, Rudolph obtained separability conditions of some states
such as Werner states, isotropic states and 2-qubit Bell diagonal states. He conjectured that
the new criterion is neither weaker nor stronger than the Peres–Horodecki PPT criterion for
separability. In the following section, we present a state that violates the positive partial-
transpose criterion but satisfies the separability criterion given in equation (2.4).

3. Bell decomposable states

In this section, we review Bell decomposable states of 2 ⊗ 3 quantum systems. A Bell
decomposable density matrix acting on 2 ⊗ 3 Hilbert space can be defined by

ρ =
6∑
i=1

pi |ψi〉〈ψi | 0 � pi � 1
6∑
i=1

pi = 1 (3.5)
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where |ψi〉 are Bell states in H 2 ⊗H 3 =∼ H 6 Hilbert space, defined by

|ψ1〉 = 1√
2
(|11〉 + |22〉) |ψ2〉 = 1√

2
(|11〉 − |22〉)

|ψ3〉 = 1√
2
(|12〉 + |23〉) |ψ4〉 = 1√

2
(|12〉 − |23〉) (3.6)

|ψ5〉 = 1√
2
(|13〉 + |21〉) |ψ6〉 = 1√

2
(|13〉 − |21〉).

It is quite easy to see that the above states are orthogonal and thus span the Hilbert space of
2 ⊗ 3 systems.

A necessary condition for separability is presented by Peres [7]. He showed that the
matrix obtained from the partial transpose of a separable state must be positive. Horodecki
et al in [8] have shown that the Peres criterion provides a sufficient condition for separability
only for the composite quantum systems of dimensions 2 ⊗ 2 and 2 ⊗ 3. This implies that the
state given in equation (3.5) is separable if and only if the following inequalities satisfy:

(p1 + p2)(p3 + p4) � (p5 − p6)
2 (3.7)

(p3 + p4)(p5 + p6) � (p1 − p2)
2 (3.8)

(p5 + p6)(p1 + p2) � (p3 − p4)
2. (3.9)

Now let us expand ρ given in equation (3.5) in terms of canonical bases |i〉 ⊗ |α〉 (for
i = 1, 2 and α = 1, 2, 3) as

ρ = 1
2 ((p1 + p2)|11〉〈11| + (p1 − p2)|11〉〈22| + (p1 − p2)|22〉〈11|

+ (p1 + p2)|22〉〈22| + (p3 + p4)|12〉〈12| + (p3 − p4)|12〉〈23|
+ (p3 − p4)|23〉〈12| + (p3 + p4)|23〉〈23| + (p5 + p6)|13〉〈13|
+ (p5 − p6)|13〉〈21| + (p5 − p6)|21〉〈13| + (p5 + p6)|21〉〈21|). (3.10)

It can be seen that by definingEij = |i〉〈j | andFαβ = |α〉〈β| as orthonormal bases ofHS(H1)

andHS(H2), respectively, equation (3.10) can be written asρ = ∑
ij,αβ Cij,αβEij⊗Fαβ . Using

this notation, we can evaluate the corresponding Hilbert–Schmidt operator U(ρ) as

U(ρ) = 1
2 ((p1 + p2)|E11〉〈E11| + (p1 − p2)|E12〉〈E12| + (p1 − p2)|E21〉〈E21|

+ (p1 + p2)|E22〉〈E22| + (p3 + p4)|E11〉〈E22| + (p3 − p4)|E12〉〈E23|
+ (p3 − p4)|E21〉〈E32| + (p3 + p4)|E22〉〈E33| + (p5 + p6)|E11〉〈E33|
+ (p5 − p6)|E12〉〈E31| + (p5 − p6)|E21〉〈E13| + (p5 + p6)|E22〉〈E11|) (3.11)

where |Eij〉 ≡ |i〉〈j | and 〈Eαβ | ≡ |α〉〈β| are used to denote Eij and Fαβ , respectively. Now
we can easily evaluate the eigenvalues of the 4 × 4 matrix U(ρ)U†(ρ) which yields

µ1 = µ2 = A µ3 = B + C µ4 = B − C (3.12)

where

A = 1
4 ((p1 − p2)

2 + (p3 − p4)
2 + (p5 − p6)

2)

B = 1
4 ((p1 + p2)

2 + (p3 + p4)
2 + (p5 + p6)

2) (3.13)

C = 1
4 ((p1 + p2)(p3 + p4) + (p3 + p4)(p5 + p6) + (p5 + p6)(p1 + p2)).

It is easy to see that all eigenvalues are non-negative. Now by evaluating the trace class norm
T (U(ρ)) = Tr(

√
U(ρ)U(ρ)†) = ∑

i

√
µi , we can easily determine the separability criterion

given in equation (2.4) as

T (U(ρ)) = 2
√
A +

√
B + C +

√
B − C � 1. (3.14)
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In the rest of this section, we shall present a counterexample to the claim that the criterion
given in equation (2.4) is neither weaker nor stronger than the PPT criterion for separability.
Let us consider a Bell decomposable state given by

p1 = 0.3 p2 = 0 p3 = 0.2 p4 = 0.1 p5 = 0.4 p6 = 0. (3.15)

It is quite easy to see that the state given by equation (3.15) violates the PPT criterion given
in equation (3.7), so it is an entangled state. On the other hand, it is separable in the sense of
criterion given in equation (2.4). It follows that any 2 ⊗ 3 state that satisfies the PPT criterion
is separable thus also satisfies the necessary criterion given in equation (2.4). Therefore, there
exists an entangled state that does not violate the new criterion. This means that as far as
2 ⊗ 3 systems are concerned, the new criterion given in equation (2.4) is weaker than the PPT
criterion. On the other hand, Rudolph in [11] presented an entangled state of a 3 ⊗ 3 system
(see also [14]) that violates the new criterion but satisfies the PPT criterion. This implies that,
in general, the new criterion induced by the greatest cross norm is not equivalent to the PPT
criterion for separability.

4. Conclusion

We have provided a counterexample of 2⊗3 systems to show that the newly proposed criterion
of separability (induced by the greatest cross norm) proposed by Rudolph is not equivalent to
the positive partial-transpose criterion; therefore, we have still a long way to go to solve the
long-standing separability criterion in mixed quantum states.
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